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Abstract 
The gestural scores of the Articulatory Phonology / Task Dynamics model are useful for conceptualizing 
how speakers control the geometry of the vocal tract. However, the parameters and inputs of the model—
gestural targets, stiffnesses, and activation states—cannot be measured directly. Instead, they must be  
estimated from empirical data, and this estimation requires assumptions about which gestures occur, 
when they occur, what their targets are, and how their activation functions may vary over time. I present 
a new approach to learning gestural parameters and activation states using a recurrent neural network 
that takes gestural activation as input and that outputs tract variable positions. The network can be 
trained to generate tract variable trajectories which closely fit empirical data. The training is accomplished 
using backpropagation through time to adjust both gestural activation functions and target/stiffness 
parameters—hence gestural activation functions are treated as learnable parameters of the model. An 
important consequence of the approach is that it does not impose temporal bounds on gestures. 
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Introduction 
 
A foundational concept in the framework of Articulatory Phonology / Task Dynamics is the concept of an 
articulatory gesture. But what IS a gesture? The term is used in a variety of ways: sometimes it is a 
movement, sometimes a task; sometimes it is a system that exerts a force, sometimes it is the period of 
time in which a force is exerted. Sometimes it is an elemental unit of a communicative code. In a basic 
sense, gestures are events, and crucially, this entails that gestures have temporal bounds.  

What does it mean for an event to be “bounded” in time? We usually think of time metaphorically as 
a 1-dimensional space, as shown in Fig. 1A. Gestures are associated with finite regions of this space. When 
we say that a gesture occurred here or there in time, it entails that the spatial location is delimited: the 
gesture had a beginning and end: 
 

 
Fig. 1. Comparison of event and system conceptions of gestures. (A) Event conception in which gestures 
are events with temporal bounds. (B) System conception in which gestures are systems with an 
activation state variable. 
 
Crucially, it is possible in the standard picture of Fig. 1A to say that two gestures do or do not “overlap”, 
by which it is meant that the beginning of one precedes the end of the other. This sort of entailment is 
not possible without an image schema in which there are identifiable temporal “locations” or “landmarks” 
which bound the periods of time associated with gestures.  

What is happening in these periods of time? The Task Dynamic (TD) model (Saltzman & Munhall, 1989, 
henceforth SM89) tells us that during the period of time associated with a gesture (called an activation 
interval), the gesture exerts a force on the state of the vocal tract (more on these forces later). Specifically, 
the activation interval of a gesture corresponds to the time when its activation state is greater than a 
threshold value of zero, as shown Fig. 1B. 
 Yet there is nothing fundamental to the equations of the SM89 TD model that requires us to impose 
an activation threshold. Furthermore, the idea that a gesture is a temporally bounded event is entirely a 
consequence of imposing the threshold: the SM89 model in actuality defines gestural activation states for 
all gestures at all points in time. Hence we can also think of gestures not as bounded events, but rather as 
systems which are continuously exerting forces on the vocal tract state. In this view, gestures do not have 
beginnings or ends, and they are not even the sorts of things that can have beginnings or endings.  

Why would we want to think of gestures as systems? In general, we want to be able to estimate 
quantities of our theoretical models from empirical data. This estimation process will always require some 
arbitrary decisions about how information is reduced in mapping from empirical data to model quantities. 
I argue that the advantages of the systems-view of articulatory gestures are that it (i) allows us to 
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reinterpret some of the arbitrariness in the estimation process, and (ii) facilitates the analysis of 
information that might otherwise be ignored.  
 
Rethinking the estimation procedure 
 
The standard approach to estimating gestural “onsets” and “offsets” is illustrated in Fig. 2A. The top panel 
shows a lip aperture time series from a single trial of an experiment. In the standard approach we use 
extremal values of first or second derivatives (i, ii) or thresholds of derivatives (iii, 20% of max velocity) of 
the tract variable time series. These are then taken as estimates of the beginnings and ends of gestural 
activation intervals. This procedure—a transformation from the tract variable to the activation interval 
signal—greatly reduces information. This reduction is generally a good thing, because the tract variable 
time series itself contains too much information to be useful as the basis of a communicative code. In 
general we want our theoretical conceptualization to be low-dimensional.  
 

 
Fig. 2. Comparison of approaches to estimating gestural onsets. (A) Standard approach. (B) Use of 
gestural system activation state as an intermediate representation. 
 
In the alternative approach proposed here Fig. 2B, we optimize a continuously varying gestural activation 
function (i.e. a gestural system state trajectory) to generate the empirically observed values of the tract 
variable. This signal may have similar information content to the original tract variable, but it is a quantity 
of our theoretical model. It has features which may of be interest to us, such as the subtle transient 
increase around a time of 0.2 s, or the presence of an extended non-zero component before the global 
acceleration maximum. Subsequently, if we want to recover the standard gestural “onset” and “offset” 
landmarks, these can be derived via extrema identification or thresholding of derivatives of the gestural 
activation function, rather than from the tract variable. Crucially, the interpretation of the landmarks is 
necessarily different: instead of being the beginnings and ends of gestural activation intervals, they delimit 
intervals of time when there is a relatively strong gestural force exerted on a tract variable. The qualifier 
relatively reinforces the idea that these intervals may have no special status and depend on somewhat 
arbitrary decisions.  
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Both approaches result in a similar reduction of information from the tract variable to the interval 
signal. In the standard approach, the reduction occurs because we have arbitrarily presupposed an 
“activation interval” and used this to transform the tract variable signal. In the alternative approach, the 
reduction occurs because we have arbitrarily imposed criteria on the gestural activation function in order 
to demarcate intervals of time with relatively strong gestural forces. The difference is that in the standard 
approach, some of the arbitrariness in the estimation process is associated with the presupposition of the 
theoretical model that gestures are bounded events; in contrast, in the alternative, the arbitrariness 
derives from a decision to identify periods of time in which there is a strong gestural force. In this sense, 
the interpretation of the arbitrariness is quite different. Moreover, by deriving an intermediate signal of 
theoretical interest—the gestural activation—we allow for new opportunities of analysis.  

To think of gestural delimitation as arbitrary is entirely consistent with the Task Dynamic model. For 
instance, SM89 justified their use of step functions of activation on the basis of simplicity, and did not 
offer any further rationale for that decision. Indeed, they stated a plan “to generalize the shapes of the 
activation waves and to allow activations to vary continuously”. The step function (black line in Fig. 3A) is 
a transition from 0 activation to maximal activation, this transition being associated with the initiation of 
gesture. The same applies to the transition from maximal activation to 0 activation, associated with 
termination of a gesture (not shown). Some obvious generalizations involve linear or logistic/sigmoidal 
ramping, also illustrated in Fig. 3A. It does not seem possible to empirically resolve which of these is 
correct, because with appropriate parameterization, all of them can be optimized to generate the velocity 
profiles that we observe empirically. Moreover, the effects of these functional forms depend on the 
structure of the TD model, which is also not a uniquely correct solution to the problem of generating 
speech movements. The mere fact that we do not have principled ways of differentiating between these 
alternatives calls into question whether gestures should be conceptualized in this way. 
 

 
Fig. 3. Examples of gestural activation dynamics. (A) comparison of activation functions. (B) an arbitrary 
activation function. 
 
Reasoning about activation from the microscale 
 
How can we motivate our decisions regarding the forms of activation functions? One approach is to 
develop additional hypotheses about the nature of gestures. From the systems perspective, one such 
hypothesis is that the entities we call gestural systems correspond to neural populations in premotor 
cortex. In this view, gestural activation is a macroscale variable that integrates over many microscale 
variables, which are the spiking rates of the neurons in the populations. The integration is assumed to 
apply over time scales that are long enough to result in smooth activation functions, yet short to enough 
to capture variation relevant to gestural control of the vocal tract. This hypothesis has been elaborated in 
detail in previous work (Tilsen, 2017, 2018, 2019b). 
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Given the above multiscale conception of gestures, we can motivate an argument that gestural 
activation cannot have functional forms of the sort in Fig. 3A, and instead we should allow for more 
general, arbitrary functional forms. The argument is as follows. Neuronal spiking occurs when the 
membrane potential of a neuron reaches a voltage threshold, and generally neuronal membrane 
potentials are maintained near this threshold. Because of this, small electrochemical fluctuations in the 
surroundings or in the states of pre-synaptic neurons can conspire to induce action potentials. If we 
assume that (under standard environmental conditions1) the amplitudes of stochastic fluctuations in the 
population are sufficiently large, then the spiking rate is never actually zero—it can only be very close to 
0. Hence gestural activation is never 0. Indeed, if we assume that the population interacts sufficiently 
strongly with other populations (e.g. lexical/conceptual systems), it is fair to assume that the spiking rate 
may sometimes be a substantial proportion of its maximum, even when there may be no readily apparent 
constriction task associated with a gesture. 
 The presence of stochastic fluctuations leads to a conundrum for our temporally delimited concept of 
a gesture—we cannot use 0 as our threshold for determining when a gesture begins and ends, because 
gestural activation will always be above 0, in the multiscale conception. Instead we must impose some 
non-zero threshold. Yet this opens the door to the possibility that we might allow for more complicated 
forms of “below-threshold” variation in activation, as in Fig. 3B. Ultimately this begs the question of why 
we would impose a threshold in the first place. Since the threshold is not essential to the TD model, its 
use seems to be driven entirely by a desire—perhaps aesthetic in nature—to delimit gestures in time. 
 A less presumptive conceptualization of the TD model is one in which there is no inherent 
delimitation; instead, there is just a set of gestural systems and tract variable systems, both continuously 
varying in time. The gestural systems exert forces on the tract variable systems, and these forces influence 
the states of tract variables and are modulated by the states of gestural systems. In the language of SM89, 
gestural activation “serves to define or ‘tune’ the current set of dynamic parameter values in the model” 
and “can be interpreted as the strength with which the associated tract-variable dynamical system 
attempts to shape vocal-tract movements at any given point in time”. The parameters referenced in these 
quotes describe damping and elastic forces on a tract variable system. SM89 also cite the similarity of this 
tuning conception to an idea from Fowler (1983), where segmental “prominence” relates to the “extent 
to which vocal tract activity is given over to the production of a particular segment” (1983: 392). 
 To summarize, we have so far argued that the concept of a temporally delimitation of gestures is 
merely an aesthetic appendage. Perhaps its popularity is attributable to its facilitation of an image schema 
in which speech is viewed a spatial arrangement of objects in time, which is a hallmark of segmental 
phonological representations. The alternative schema which rejects delimitation is one in which there is 
a continuous trajectory (or flow) of gestural system states in a gestural activation state space, driving a 
continuous trajectory of tract variable states in a tract variable state space. This continuous activation 
flow alone may not be entirely adequate for reasoning about a communicative code: we do seem to 
observe that in many cases there are rapid changes in our measures of vocal tract states—i.e. 
movements—and it is quite valuable to localize these in time. But this localization is ultimately arbitrary 
and does entail the existence of entities with temporal bounds.  
 
The RNN approach 
 
The RNN implementation of gesture and tract variable dynamics developed here is inspired by recent 
observations that layer skipping in residual networks can be viewed as one step of Euler’s numerical 
method for solving differential equations (Chen et al., 2018; Dupont et al., 2019; Weinan, 2017). In the 
limit of small time steps, such networks can be used to provide an accurate numerical solution for a system 

 
1 The speaker is alive and not in cryogenic stasis. 
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of differential equations. The model presented below uses this idea to implement a neural network which 
generates the dynamics of the forced, damped mass-spring equations for tract variables in the Task 
Dynamic model. Backpropagation can be used to “learn”—i.e. optimize—gestural targets and stiffnesses, 
and even gestural activation functions, by treating them as high-dimensional parameters. Before 
describing the TD RNN model, we first examine a toy example using a simpler system. 
 
How can an RNN solve a differential equation? 
 
To illustrate how an ODE can be “solved” by an RNN, we use the non-autonomous ODE in (Eq. 1) as an 
example, where 𝐷𝐷(𝑡𝑡) = 𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡) is a time-dependent input to the system, and 𝑥𝑥(𝑡𝑡) is the state variable of 
the system.  
 

 ẋ = dx
dt

= −x + D(t),              where 𝐷𝐷(𝑡𝑡) = sin(𝑡𝑡) 
 

(Eq. 1) 

 
With initial condition 𝑥𝑥0, this system has the following analytic solution: 
 

 
𝑥𝑥(𝑡𝑡) = �

1
2

+ 𝑥𝑥0� e-t −
√2𝑐𝑐𝑐𝑐𝑠𝑠 �𝑡𝑡 + 𝑝𝑝𝑠𝑠

4 �
2

 
 

(Eq. 2) 

 
A numeric solution can be obtained for times t = 0, dt, … , N using Euler’s method, where we specify a 
value for initial condition and iteratively add 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡 to the previous timestep, as illustrated in the Matlab 

code below. As shown in Fig. 4, the numeric solution is very close to the analytic solution. The system has 
a decaying transient due to the exponential decay, and a harmonic oscillation from the sin(𝑡𝑡) input.  
 

 
Fig. 4. Analytic and numeric solutions of the system in (Eq. 1). 
 
The code snippet below shows how Euler’s method can be implemented. Here 𝑡𝑡 is a vector of times which 
is indexed by i. Observed that −x(𝑠𝑠) + 𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡(𝑠𝑠) in the solution loop is the right hand side of (Eq. 1) and is 
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the slope of the tangent line at time 𝑡𝑡(𝑠𝑠). By multiplying this slope by a small time step dt and adding it to 
𝑥𝑥(𝑠𝑠) we obtain an approximation of 𝑥𝑥(𝑠𝑠 + 1).  
 
dt = 0.001; %time step 
t = 0:dt:20; 
 
x = zeros(size(t)); 
x(1) = 2; %initial condition 
 
%solution 
for i=1:length(t)-1 
    x(i+1) = x(i) + ( -x(i) + sin(t(i)) ) *dt; 
end 
 

We can interpret Euler’s numeric solution of the system as the RNN in Fig. 5A, where the state variable 
is the output layer, the sin(𝑡𝑡) term is an input layer, and the −𝑥𝑥 term is a recurrent connection from the 
output layer to itself at the next time step. The figure also shows a node that represents the loss at each 
timestep, 𝐿𝐿(𝑡𝑡). If we think of the analytic solution from (Eq. 2) as 𝑦𝑦(𝑡𝑡), a target output of the solution, 
then 𝐿𝐿(𝑡𝑡) is half the squared difference of the analytic solution and numeric solution. If the timestep is 
sufficiently small and the system is non-stiff, the loss will be small as well. A common convention in 
depicting RNNs is to “unfold” the network, as in Fig. 5B. In this depiction, each time step is associated with 
a “copy” of the RNN, and these copies are viewed as layers of a potentially very deep feed-forward 
network. 
 

 
Fig. 5. RNN implementation of Euler’s method. (A) RNN with input layer D(t), output layer x(t), recurrent 
connection from the output layer to itself, and loss L(t). (B) Unfolded network. 
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Learning ODE input with an RNN 
 
In the above example, we assumed that we knew the input to the system, 𝐷𝐷(𝑡𝑡). But what if we do not 
know the input? In this case, we can use the network to optimize the input. To do this, we think of the 
input at each time step as a separate parameter, and we use backpropagation (i.e. gradient descent) to 
find an input which minimizes the loss. Why might this be useful? Think of an empirically observed tract 
variable time series as a target output, and consider that the TD model generates these outputs with 
gestural activation as input. We can use a network to infer gestural activation functions from empirical 
data.  

Before developing the TD RNN model, let us consider how backpropagation through time works for 
the toy example above. We begin by making a guess at the input. Our guess will be 𝐷𝐷(𝑡𝑡) = 0, i.e. there is 
no input. We will also set an initial condition 𝑥𝑥0 = 𝑦𝑦0, i.e. the initial state of the system is the initial value 
of the target output. We run a forward pass of the network, which is almost identical to Euler’s method 
shown above, except that we replace the known driving force sin(𝑡𝑡) with our guess 𝐷𝐷(𝑡𝑡) = 0. The total 
loss is shown in (Eq. 3), and the error at each time step is shown in (Eq. 4):  

 
 

𝐿𝐿 = �
1
2

[𝑥𝑥(𝑡𝑡) − 𝑦𝑦(𝑡𝑡)]2
𝑁𝑁

𝑑𝑑=1

 

 

(Eq. 3) 

 𝐸𝐸(𝑡𝑡) = 𝑥𝑥(𝑡𝑡) − 𝑦𝑦(𝑡𝑡) 
 

(Eq. 4) 

 
The target output, network output, and error are shown in Fig. 6. Note that the units of x and the input 
are arbitrary in this example. Clearly the initial guess for the input was not very good, since the error is 
nearly as large in magnitude as the target output. We need to figure out how much to adjust the input at 
each time step to decrease the total loss.  
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Fig. 6. Initial forward pass of RNN. The error (purple line) is the difference between the network output 
(blue line) and target output (yellow line). The input guess is also shown (red line). 
 
To determine how much to adjust 𝐷𝐷(𝑡𝑡) at each time step, we need to know how much each value of 𝐷𝐷(𝑡𝑡) 
contributes to the total loss. To determine this, we need to know the gradient (partial derivative) of the 
total loss with respect to the input values, i.e. ∂𝐿𝐿

∂𝐷𝐷(𝑑𝑑), which tells us the ratio of change in loss to change in 
input. If there were no recurrent connection, we could define this quantity as below, using the chain rule: 
 

 ∂L
∂D(t) = �

∂L(t)
∂D(t)

N

t=1

= �
∂L(t)
∂x(t)

∂x(t)
∂D(t)

N

t=1

 

 

(Eq. 5) 

 
And since we know that ∂𝑑𝑑(𝑑𝑑)

∂𝐷𝐷(𝑑𝑑) = δ𝑡𝑡, the gradient would be: 
 

 ∂L
∂D(𝑡𝑡)

= �
∂L(𝑡𝑡)
∂D(𝑡𝑡)

𝑁𝑁

𝑑𝑑=1

= �
1
2

[𝑥𝑥(𝑡𝑡) − 𝑦𝑦(𝑡𝑡)]δt
𝑁𝑁

𝑑𝑑=1

 

 

(Eq. 6) 

 
But in fact, 𝐿𝐿(𝑡𝑡) depends not only on the current output 𝑥𝑥(𝑡𝑡) but also indirectly on the previous output 
𝑥𝑥(𝑡𝑡 − 1), because the current output depends on the previous output. Alternatively, this entails that the 
output 𝑥𝑥(𝑡𝑡) influences not only 𝐿𝐿(𝑡𝑡) but also 𝐿𝐿(𝑡𝑡 + 1), 𝐿𝐿(𝑡𝑡 + 2), … , 𝐿𝐿(𝑠𝑠). Thus the gradient of the total 
loss with respect to the output at any given time is: 
 

 ∂𝐿𝐿
∂𝑥𝑥(𝑡𝑡)

=
∂𝐿𝐿(𝑡𝑡)
∂𝑥𝑥(𝑡𝑡)

+
∂𝐿𝐿(𝑡𝑡 + 1)
∂𝑥𝑥(𝑡𝑡)

+ ⋯+
∂𝐿𝐿(𝑁𝑁)
∂𝑥𝑥(𝑡𝑡)

= �
∂𝐿𝐿(τ)
∂𝑥𝑥(𝑡𝑡)

𝑁𝑁

τ=𝑑𝑑

 

 

(Eq. 7) 
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(Eq. 7) reflects the fact that the value of 𝑥𝑥(𝑡𝑡) affects the loss at time t and all subsequent times. Note that 
the gradient of 𝑥𝑥(𝑡𝑡 + 1) with respect to the previous value for our system is: 
 

 ∂𝑥𝑥(𝑡𝑡 + 1)
∂𝑥𝑥(𝑡𝑡)

= −x(𝑡𝑡)δ𝑡𝑡 

 

(Eq. 8) 

 
For all but the first term in the sum in (Eq. 7), we can expand with the chain rule to include intermediate 
partial derivatives, e.g. 
 

 ∂𝐿𝐿(𝑡𝑡 + 1)
∂𝑥𝑥(𝑡𝑡)

=
∂𝐿𝐿(𝑡𝑡 + 1)
∂𝑥𝑥(𝑡𝑡 + 1)

∂𝑥𝑥(𝑡𝑡 + 1)
∂𝑥𝑥(𝑡𝑡)

= 𝐸𝐸(𝑡𝑡 + 1) ⋅ −𝑥𝑥(𝑡𝑡)δ𝑡𝑡 

 
∂𝐿𝐿(𝑡𝑡 + 2)
∂𝑥𝑥(𝑡𝑡)

=
∂𝐿𝐿(𝑡𝑡 + 2)
∂𝑥𝑥(𝑡𝑡 + 2)

∂𝑥𝑥(𝑡𝑡 + 2)
∂𝑥𝑥(𝑡𝑡 + 1)

∂𝑥𝑥(𝑡𝑡 + 1)
∂𝑥𝑥(𝑡𝑡)

= 𝐸𝐸(𝑡𝑡 + 2) ⋅ −𝑥𝑥(𝑡𝑡 + 1)δ𝑡𝑡 ⋅ −𝑥𝑥(𝑡𝑡)δ𝑡𝑡 

 
… 

(Eq. 9) 

 
This means that the gradient of the total loss with respect to 𝑥𝑥(𝑡𝑡) is: 
 

 ∂𝐿𝐿
∂𝑥𝑥(𝑡𝑡)

= 𝐸𝐸(𝑡𝑡) + � 𝐸𝐸(τ)
𝑇𝑇

τ=𝑑𝑑+1

⋅ ��−𝑥𝑥(𝑠𝑠)δ𝑡𝑡
τ−1

𝑛𝑛=𝑑𝑑

� 

 

(Eq. 10) 

 
Because δ𝑡𝑡 is small, the contribution of 𝑥𝑥(𝑡𝑡) to the loss at times 𝑡𝑡 + 1, 𝑡𝑡 + 2, … becomes smaller and 
smaller. The error associated with 𝑥𝑥(𝑡𝑡) can be backpropagated to each of the inputs 𝐷𝐷(𝑡𝑡) via: 
 

 ∂x(t)
∂D(t) = δt 

 

(Eq. 11) 

 
To implement the calculation of the partial derivatives in (Eq. 10) and (Eq. 11), we use the backpropagation 
algorithm. We start from the final time step and use the partial derivatives to assign error to each node 
of the unfolded network, allowing the error to “flow” backwards through the unfolded network. The 
algorithm for this is shown in the Matlab code below. In each time step, we store the back-propagated 
error in variables dx and dD. Note that we do not pass error back to the initial input, because the initial 
position is fixed. 
 
for i=length(x):-1:2  
    % add current error to total error  
    % associated with current position:  
    dx(i)=dx(i)+E(i); 
     
    % error to current input (dL_dx(t) * dx(t)_dD(t)): 
    dD(i)=dx(i)*dt; 
     
    % pass error back to previous timestep: 
    dx(i-1)=dx(i)*-x(i)*dt; 
end 
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Notice also that by passing the error associated with 𝑥𝑥(𝑡𝑡) backwards in time to 𝑥𝑥(𝑡𝑡 − 1), using the factor 
∂𝑑𝑑(𝑑𝑑+1)
∂𝑑𝑑(𝑑𝑑) = −𝑥𝑥(𝑡𝑡)δ𝑡𝑡, we are implementing the sum over products of (Eq. 10), but doing so in reverse 

temporal order.  After stepping backward through time we have a vector of gradients ∂𝐿𝐿
∂𝐷𝐷

. We use these 
gradients to adjust the input, with the update rule in (Eq. 12), where λ > 0 controls how much the 
gradient is adjusted.  
 

 
𝐷𝐷 = 𝐷𝐷 − λ

∂𝐿𝐿
∂𝐷𝐷

 
 

(Eq. 12) 

 
We then iterate the steps above many times, i.e. (i) run a forward pass with the updated 𝐷𝐷(𝑡𝑡), (ii) calculate 
the loss, (iii) backpropagate the error, and (iv) update 𝐷𝐷(𝑡𝑡). The iterations are stopped when the loss stops 
changing substantially. Fig. 7 shows the results of the iterations. The top panel shows the gradient of the 
loss with respect to the input after the first and last iterations: initially the gradient is relatively large but 
by the end of the optimization it is close to zero. The middle panel shows the final model output and target 
output—they are nearly identical. The bottom panel shows the optimized input, which is very close to the 
actual input 𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡) that generated the target output. 
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Fig. 7. Results of iterated backpropagation. Top: comparison of gradients after first and last iterations. 
Middle: the error (yellow) is the difference between model output (blue) and target (orange). Bottom: 
The initial and final inputs, compared to the actual input, sin(t).  
 

The toy example above illustrates several key aspects of the method that extend to the model we 
implement below. First, we solve a differential equation (or system of differential equations) with a 
recurrent neural network which implements Euler’s method, using small time steps. Second, we 
reconceptualize the “input” to the system (gestural activation functions) as high-dimensional parameters 
which can be optimized. Note that in the TD RNN models below, there are additional non-time-dependent 
parameters—gestural stiffnesses and targets—which are “shared” across the copies of the unfolded 
network. Although we did not incorporate any shared parameters in the above example, the gradients of 
the loss with respect to these parameters are determined in a similar fashion to those of the time-varying 
input, except that in each time step the backpropagated error is accumulated to the static parameters 
rather than being assigned to time-index of the parameter. Third, the dependence of the system state on 
its past state is implemented via a recurrent connection in the network. With more complicated system 
states and update rules, such as a damped, driven harmonic oscillator with both a position and velocity, 
there will be multiple recurrent connections representing the dependencies of the system state variables 
on their past values. 
 
Differences between current model and Task Dynamic model 
 
The Task Dynamic model of Saltzman & Munhall (1989) describes both the current states of gesturally-
driven tract variable systems, such as lip aperture (LA), and the current states of model articulators, such 
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as the jaw (JAW), lower lip (LL), and upper lip (UL), all of which contribute to the tract variable LA. Each 
tract variable is modeled with a second order differential equation (Eq. 13) which is analogous to a driven, 
damped mass-spring system. The reader should be clear that the damped mass-spring system is not a 
model of a gesture; rather, it is a model of how the state of a TV system evolves continuously in time. The 
x in the equation is a tract variable, and so in the full TD model there is a set of such equations, one for 
each tract variable. 
 

 𝑚𝑚�̈�𝑥 + 𝛽𝛽(𝑡𝑡)�̇�𝑥 + 𝑘𝑘(𝑡𝑡)�𝑥𝑥 − 𝑇𝑇(𝑡𝑡)� = 0 
 
𝑚𝑚�̈�𝑥 = −𝛽𝛽(𝑡𝑡)�̇�𝑥�����

damping

− 𝑘𝑘(𝑡𝑡)𝑥𝑥���
restoring

+    𝑘𝑘(𝑡𝑡)𝑇𝑇(𝑡𝑡)�������
driving

 

 

(Eq. 13) 

 
To better understand the equation, consider that the term 𝑚𝑚�̈�𝑥 is the product of a mass m and an 

acceleration �̈�𝑥. Then recall the Newtonian relation force equals mass times acceleration, 𝐹𝐹 = 𝑚𝑚𝑚𝑚. The 
equation can be rearranged to describe three forces on a tract variable: a damping force, a 
restoring/elastic force, and a driving force; the latter of these two forces share the same proportionality 
factor, 𝑘𝑘(𝑡𝑡), and hence can be combined into a single term. Here we separate them to clarify their origins 
and meaning. The driving force 𝑘𝑘(𝑡𝑡)𝑇𝑇(𝑡𝑡) is determined from the stiffness and target parameters of 
gestures which influence a tract variable. We refer to 𝑘𝑘(𝑡𝑡) and 𝑇𝑇(𝑡𝑡) as the dynamic stiffness and dynamic 
target of a tract variable. One sensible way to determine these quantities is to take the weighted average 
of the static gestural parameters, where the weighting term is gestural activation. If gestural activation 
functions are assumed to be step functions, then all active gestures have equally weighted contributions 
to the dynamic parameters, and all inactive gestures have no contribution. Note that critical damping is 
imposed by setting β(𝑡𝑡) = 2�𝑘𝑘(𝑡𝑡), and that the inertial coefficient is set to 𝑚𝑚 = 1 and hence can be 
omitted. 

When conducting numerical simulations with the second order ODE in (Eq. 13), it is convenient to 
convert the second order equation into two coupled first order differential equations (Eq. 14), 
accomplished by defining the variable 𝑦𝑦 = �̇�𝑥. Note that if 𝑥𝑥 is interpreted as a position, then 𝑦𝑦 is a velocity. 
 

 �̇�𝑥 = 𝑦𝑦 
 
�̇�𝑦 = −2�𝑘𝑘(𝑡𝑡)𝑦𝑦 − k(t)x + k(t)T(𝑡𝑡) 
 

(Eq. 15) 

 
In the SM89 model, changes in tract variable positions and velocities are mapped to changes in model 
articulator positions and velocities via weighted matrices of partial derivatives. To obtain realistic 
articulator trajectories, the weighting of “receptivities” of changes in articulator states to changes in tract 
variable states must be based on the set of currently active gestures (1989: 379). Hence the TD model 
includes parameters which describe the relative influences of gestures as well as parameters which 
describe the interactions between tract variables.  

Earlier we stated that the TD model does not require temporally delimited gestures. This statement 
is only specifically true in relation to the role that gestural activation functions play in exerting forces on 
the states of tract variable systems: the TD model of tract variable dynamics does not require any temporal 
delimitation of the gestural activation functions for this purpose, because when their values are zero, they 
exert no forces. However, there is a way in which temporal delimitation is incorporated into the SM89 
model. Consider a set of gestures G which influence a given model articulator. When the sum of the 
current activation values of the gestures in G is zero, there is no influence on that model articulator. 
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Instead, the model articulator is governed by a neutral attractor. Indeed, the neutral attractor might be 
conceptualized as just another gesture, one whose activation is determined by the sum of activations of 
G with the rule in (Eq. 16).  

 
 

 

gneutr =

1, �Gj
j

= 0

0, �Gj
j

> 0
 

(Eq. 16) 

 
Note that the SM89 formulation determines an influence of the neutral attractor on an articulator, 

rather than a tract variable. Nonetheless, in that formulation there is a threshold of zero for the total 
activation of gestures which influence an articulator, and the threshold determines when the neutral 
attractor exerts an influence. In other words, the influences of active gestures and of the neutral attractor 
are mutually exclusive. The threshold is implicitly a consequence of the notion that gestures “turn on” and 
“turn off”, with the off-state being zero activation. 

In contrast, in the TD RNN implementation, the models developed below only generate tract variable 
states; they do not represent model articulators and nor do they model interactions between tract 
variables. Thus the models are not nearly as powerful as the full TD model. In later discussion we consider 
how the current approach might be extended to be more comprehensive. 

Despite omitting a model articulator level, the network models below do have a gestural weighting 
mechanism and a neutral attractor, although these are conceptualized and implemented in way that 
differs substantially from the TD model. Specifically, the following differences obtain in the TD RNN model:  
 

(i) Neutral attractors specify a default (equilibrium) state for a tract variable, rather than a 
model articulator. 
 
(ii) Neutral attractors, one for each TV system, have a constant, low level of activation. 
 
(iii) Dynamic parameters of TV systems are weighted averages of gestural and neutral 
attractor parameters—gestures and neutral attractors are treated identically, with the only 
difference being that neutral attractor activations are fixed, rather than optimized.  

 
The above aspects of the current approach eliminate entirely the need for temporal delimitation of 
gestures, either directly or indirectly via an activation threshold. 

  
The basic model 
 
The first model we present adheres more closely to the TD model with regard to how the dynamic stiffness 
and target are implemented. Fig. 8 shows the network architecture. The blue boxes are input vectors of 
time-varying gestural activation, with one dimension for each gesture. The yellow boxes are vectors of 
static gestural stiffness and target parameters. Both the gestural activation and target/stiffness 
parameters are optimized via backpropagation of error. The nodes labeled (1) and (2) are vectors of 
dynamic stiffness and target parameters, one for each tract variable. The nodes labeled (3) and (4) are 
vectors for the time varying velocities and positions of the tract variables. (5) shows the loss at time step 
t, which is half the squared difference between the current TV position and the target value. 
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Fig. 8. Basic model network architecture. The model elements are gestural activation (blue boxes), 
gestural stiffness and target parameters (yellow boxes), dynamic stiffness and target parameters (labels 
1 and 2), tract variable velocities and positions (3 and 4), and loss (5). 
 
The equations for the forward dynamics of the model are shown below. For tract variable (TV) 𝑠𝑠, the 
dynamic stiffness 𝐾𝐾𝑖𝑖(𝑡𝑡) and target 𝑇𝑇𝑖𝑖(𝑡𝑡) are the gestural activation-weighted averages of the gestural 
stiffness and target parameters, 𝑘𝑘�𝑗𝑗 and 𝑇𝑇�𝑗𝑗 (Eq. 17 and 18). 𝑊𝑊𝑖𝑖𝑗𝑗  is a binary matrix which specifies which 
gestures j are associated with which TVs 𝑠𝑠; we refer to this as the gesture-TV map. To interpret this 
equation, consider that the gestural stiffness and target parameters are intrinsic, long-timescale 
memories. They are associated with the way that a gestural system interacts with a TV system. The 
activations of gestures, 𝐺𝐺𝑗𝑗(𝑡𝑡), determine their relative influences on the dynamic stiffness and target of 
the tract variable. 
 

 
𝐾𝐾𝑖𝑖(𝑡𝑡) =

∑ 𝑊𝑊𝑖𝑖𝑗𝑗𝑗𝑗 𝐺𝐺𝑗𝑗(𝑡𝑡)𝑘𝑘�𝑗𝑗
∑ 𝑊𝑊𝑖𝑖𝑗𝑗𝐺𝐺𝑗𝑗(𝑡𝑡)𝑗𝑗

 

 

(Eq. 17) 

 
𝑇𝑇𝑖𝑖(𝑡𝑡) =

∑ 𝑊𝑊𝑖𝑖𝑗𝑗𝑗𝑗 𝐺𝐺𝑗𝑗(𝑡𝑡)𝑇𝑇𝚥𝚥�
∑ 𝑊𝑊𝑖𝑖𝑗𝑗𝐺𝐺𝑗𝑗(𝑡𝑡)𝑗𝑗

 

 

(Eq. 18) 
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The current velocity of each tract variable, 𝑉𝑉𝑖𝑖(𝑡𝑡), is determined by an Euler update of the TD ODE for 
velocity, as shown in (Eq. 19). The current position of each tract variable, 𝑋𝑋𝑖𝑖(𝑡𝑡), is the position defined by 
an Euler update of the TD ODE for position, as shown in (Eq. 20). The loss 𝐿𝐿𝑖𝑖(𝑡𝑡) at the current timestep 
for TV 𝑠𝑠 is the antiderivative of the error (Eq. 21). 
 

 𝑉𝑉𝑖𝑖(𝑡𝑡) = 𝑉𝑉𝑖𝑖(𝑡𝑡 − 1) + Δt �−2�𝐾𝐾𝑖𝑖(𝑡𝑡)𝑉𝑉𝑖𝑖(𝑡𝑡 − 1) − 𝐾𝐾𝑖𝑖(𝑡𝑡)�𝑋𝑋𝑖𝑖(𝑡𝑡 − 1) − 𝑇𝑇𝑖𝑖(𝑡𝑡)�� 
 

(Eq. 19) 

 𝑋𝑋𝑖𝑖(𝑡𝑡) = 𝑋𝑋𝑖𝑖(𝑡𝑡 − 1) + Δ𝑡𝑡𝑉𝑉𝑖𝑖(𝑡𝑡 − 1) 
 

(Eq. 20) 

 𝐿𝐿𝑖𝑖(𝑡𝑡) = (1/2)[𝑋𝑋𝑖𝑖(𝑡𝑡) − 𝑌𝑌𝑖𝑖(𝑡𝑡)]2 
 

(Eq. 21) 

 
For the simple case of one gesture, Fig. 9 illustrates how variation of the parameters and activation 

function influence the variables of the model. Note that the tract variable 𝑥𝑥(𝑡𝑡) and dynamic target 𝑇𝑇(𝑡𝑡) 
are expressed in normalized units from [0,1], as is the gestural target; for most tract variables we will 
assume that 0 is least constricted and 1 is most constricted (for lip aperture this will be reversed). The 
neutral gesture in all cases has a target of 0.5 and a constant activation of 0.1. Notice that the dynamic 
target never quite reaches the gestural target because it is a weighted average of the active and neutral 
gestural targets. Decreasing the gestural target from 0.95 to 0.75 (blue vs. orange lines) decreases the 
dynamic target when the gesture has non-zero activation. Furthermore, decreasing the maximal gestural 
activation to 0.5 (purple line) also decreases the dynamic target, but the effect is more subtle. These 
changes in the dynamic target are manifested not only in the positional extremum achieved by the tract 
variable, but also its velocity profile and maximal velocity.  Another effect to observe involves sigmoidal 
activation ramping (cf. blue vs. yellow lines). The sigmoidal ramping of gestural activation does not affect 
the position extremum of the tract variable but causes subtle changes in the position and velocity 
trajectories. 
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Fig. 9. Illustration of how changes in gestural parameters and activation influence model output. 
 

Ultimately, the output of the model is very similar to what the standard TD model generates for a 
tract variable influenced by a single gesture. This is not surprising given that we have imposed standard 
gestural activation functions, and that the RNN architecture mimics the TD equation for tract variable 
dynamics. Our real interest is in optimizing these functions, given empirical data. The details of 
backpropagation of error to optimize gestural parameters for the basic model are provided in the 
Appendix. Results of model optimizations on an articulatory dataset are presented further below. 
 
The field model 
 
The field model differs from the basic model in a number of ways. First, there is a new entity, a target 
planning field, associated with each tract variable. The target planning field (also called an intentional 
planning field, see Tilsen (2018, 2019a)) is conceptualized as a scalar field, with an activation value defined 
over a continuous, bounded interval of tract variable values. In actual implementation the field values are 
only defined on a grid of equally spaced points, which we will index with 𝑘𝑘. The tract variable value 
associated with index k is τ𝑘𝑘, and here we use n=50 equally spaced points on the interval [0,1].  

The dynamic target of a tract variable 𝑇𝑇𝑖𝑖(𝑡𝑡) is the centroid of field activation, i.e. the activation-
weighted average value of τ (Eq. 22). The current stiffness 𝐾𝐾𝑖𝑖(𝑡𝑡) is proportional to the sum of field 
activation (Eq. 23), with the proportionality constant being 𝑘𝑘�Δ𝑡𝑡−1.  
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𝑇𝑇𝑖𝑖(𝑡𝑡) =

∑ 𝐹𝐹𝑖𝑖𝑘𝑘(𝑡𝑡)τ𝑘𝑘𝑘𝑘

∑ 𝐹𝐹𝑖𝑖𝑘𝑘(𝑡𝑡)𝑘𝑘
 

 

(Eq. 22) 

 
𝐾𝐾𝑖𝑖(𝑡𝑡) =

𝑘𝑘�
Δ𝑡𝑡
�𝐹𝐹𝑖𝑖𝑘𝑘(𝑡𝑡)
𝑘𝑘

 

 

(Eq. 23) 

 
The field activation has two components, excitatory input 𝐹𝐹𝑖𝑖𝑘𝑘+(𝑡𝑡) and inhibitory input 𝐹𝐹𝑖𝑖𝑘𝑘−(𝑡𝑡). The 

activation is the rectified difference of these (Eq. 24). Both of these inputs are derived from gestural force 
distributions. In other words, gestures are imagined to exert an excitatory force on an intentional planning 
field, and an inhibitory force on that same field. The force distributions are Gaussian functions with central 
values of 𝑇𝑇�𝑗𝑗+ and 𝑇𝑇�𝑗𝑗−, for the excitatory and inhibitory forces respectively (Eq. 25 and 26). In the current 
implementation, all force distributions have a fixed standard deviation of 0.10. The amplitudes of the 
force distributions are determined by the current gestural activation, 𝐺𝐺𝑗𝑗(𝑡𝑡). Note that the matrix 𝑊𝑊𝑖𝑖𝑗𝑗  is 
the gesture-TV map, and ensures that only gestures j associated with TV 𝑠𝑠 have an influence on the field 
for TV 𝑠𝑠. 
  

 𝐹𝐹𝑖𝑖𝑘𝑘(𝑡𝑡) = ReLU[𝐹𝐹𝑖𝑖𝑘𝑘+(𝑡𝑡) − 𝐹𝐹𝑖𝑖𝑘𝑘−(𝑡𝑡)] 
 

(Eq. 24) 

 Fik+ (t) = �Wij
j

Gj(t)𝒩𝒩�τk, T�j+� 

 

(Eq. 25) 

 𝐹𝐹𝑖𝑖𝑘𝑘−(𝑡𝑡) = �𝑊𝑊𝑖𝑖𝑗𝑗
𝑗𝑗

𝐺𝐺𝑗𝑗(𝑡𝑡)𝒩𝒩�τ𝑘𝑘,𝑇𝑇�𝑗𝑗−� 

 

(Eq. 26) 

 
The relevant aspects of field model are illustrated in Fig. 10 for a single gesture with TV target 0.95 

and sigmoidal activation ramping. The gesture has substantial activation over the time interval [0.050, 
0.100]. Heatmaps show the time-evolution of the field and its inputs, with lighter shades indicating higher 
amplitudes. The values of the field and inputs at time 0.075 s, which is in the middle of the activation 
interval, are shown in the panels on the right. Note that the centroid of the target planning field (green 
line) is shown both in the time-slice and superimposed in the field heatmap. The dynamic stiffness is 
proportional to the area under the activation function in the planning field. Throughout the simulation, 
the neutral attractor (with target 0.5) has an activation of 0.1. 
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Fig. 10. Example of target planning field dynamics for a single gesture with logistic activation ramping. 
Gestural activation is substantial in the interval t=[0.05, 0.100]; gestural target is 0.95. Left (top-to-
bottom): dynamic target, dynamic stiffness, and heatmaps of field activation, excitatory field input, and 
inhibitory field input. Right: excitatory and inhibitory input and rectified field activation at time 0.075 s. 
The dynamic target (centroid) is shown with a green line. 
 

To simplify the model implementation, the dynamics of the planning field are not modeled explicitly—
there is no representation of the first time derivative of the current field activation—hence the “force” 
distributions do not play the role of a true force by governing the change in the first derivative. Instead, a 
weighted sum of the activation force distributions determines the current value of the intentional 
planning field. This is conceptually equivalent to thinking of the gestural forces as target activation values, 
defined over the field, with the field dynamics evolving very rapidly (within each timestep) to an 
equilibrium; in this case, the equilibrium is the gestural-activation weighted average of the excitatory 
values minus the gestural-activation weighted average of the inhibitory values. 

There are several important points to mention here. First, the rationale for the rectification of the 
field (i.e. the ReLU nonlinearity) comes from a microscopic conception of an intentional planning field in 
which the gestural systems are neural ensembles which project to both excitatory and inhibitory neurons 
in somatotopically organized neural populations (possibly located in primary motor cortex). The inhibitory 
neurons in the intentional planning field exert local inhibitory forces on excitatory neurons in the field, 
whereas the excitatory neurons are the source of efferent projections to brainstem systems that control 
muscle tension. Hence only the excitatory neurons of the primary motor cortex fields directly determine 
current target positions. The linear rectification implements these assumptions. 
 Second, the approach to determining the dynamic stiffness in the field model makes gesture-specific 
stiffness parameters unnecessary. In the field model, the strength of the force experienced by a TV system 
is proportional to the total activation of the field, with just one parameter k�Δ𝑡𝑡−1. On the microscale this 
entails that the spiking rates of excitatory neurons in the field determine the strength of the driving force 
on a given tract variable. To the extent that we associate different movement velocities with different 
types of gestures (e.g. consonantal vs. vocalic), the model can generate differences via the relative 
activation of gestures and the neutral attractor for each intentional planning field. Eliminating gestural 
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stiffnesses as independent parameters is desirable because it is unclear how to derive them from the 
microscale conception. It is more intuitive that the strength of the force experienced by a TV system is 
determined by the spiking rates of neurons that encode targets. 
 
Methods 
 
Dataset. The dataset used here is from an experiment that has previously been analyzed using other 
methods (Tilsen, 2020). There were six participants in the experiment, and articulatory data were 
collected with electromagnetic articulography (EMA). More detail regarding data collection procedures 
can be found in the aforementioned paper. Each trial of the experiment elicited a production of a CVC 
syllable cued by a visual signal, where C = {/p/,/t/,Ø} and V = /a/. Each production was also preceded by a 
prolonged /i/ vowel (for about 1.5 s), during which time the participant was informed to the identity of 
the target CVC syllable. Hence there is an opportunity for the pre-response vowel /i/ to be colored by sub-
threshold influences of gestures which are components of the target response but have not been 
“initiated” or “activated” in the conventional sense.  
 
Network output. The target outputs of the network are time series of tract variables. Specifically, three 
tract variables: lip aperture (LA), which is the Euclidean distance between the lips; tongue tip constriction 
degree (TT), which is derived from the vertical position of a sensor on the tongue tip, and tongue body 
constriction degree (TB), which is derived from the vertical position of a sensor on the tongue body. All 
three of these variables were normalized to the interval [0,1] on a by-participant basis. Notice that these 
tract variables are the rows of Table 1, which shows the mapping between gestures and tract variables. 

 
Parameter initialization and constraints. Given the pre-response vowel and the nine target syllables of the 
experiment (orthographically cued with: pop, pot, pah, top, tot, tah, op, ot, ah), a standard analysis holds 
that there are up to six unique oral articulatory gestures that could be present on a given trial: LA clo, LA 
op, TT clo, TT op, TB [i], and TB [a], i.e. constriction and release gestures associated with /p/ and /t/, and 
vocalic gestures associated with /i/ and /a/. The same gesture may occur twice in a trial, as in pop and tot. 
Assuming that a gesture which occurs in both onset and coda is controlled by “the same system”, there 
are six gestural systems in the network. The initial target parameters of these gestural systems are shown 
in the table below. Neutral attractor targets were fixed at 0.5 for all tract variables. Note that there is a 
tract variable coordinate direction difference between LA and TT/TB, such that maximal bilabial closure 
of /p/ is defined as an LA (lip aperture) value of 0, whereas maximal alveolar closure of /t/ is defined as 1 
(and similarly for TB)—in other words, the TV coordinate scale of LA is reversed compared to the scales of 
TT or TB. This potentially confusing inconsistency is a consequence of preserving the meaning of 
“aperture” as a degree of opening (with 1 being maximal opening), in contrast with a constriction degree, 
which is a degree of closure (with 1 being maximal closure).  
 

Table 1. Initial values of target parameters  
of gestural systems 
  gestural system 
  LA  TT  TB  NEUT 
  clo op clo op [i] [a]  

tract 
variable 
system 

LA 0 1     0.5 
TT   1 0   0.5 
TB     1 0 0.5 
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The initial stiffnesses of all gestural systems were 1 x 105 s-2. The units of stiffness of a physical spring are 
force/length, where length is a displacement from equilibrium; hence stiffness relates displacement to 
force. The SI base units of force are kg·m·s-2, and for the TD model we ignore mass and analogize the 
normalized tract variable coordinate to length. The frequency of an undamped harmonic oscillator with 
mass of 1 is ω = √k, with period 𝑇𝑇 = 2π

ω
, and so the initial stiffness of 105 would correspond to an 

oscillation period of about 0.020 s, if the system were not damped. 
All of the neutral attractor parameters in the model are fixed, with activations of 0.1 (10% of 

maximum), targets of 0.5, and stiffnesses of 0.5 x 105. Because the neutral attractors are always active in 
the current model, their fixed activations and stiffnesses influence the optimized values of the gestural 
system stiffnesses: gestural system stiffnesses must remain sufficiently large to outweigh the influence of 
neutral attractor stiffnesses; the relative activations of gestures to neutral attractor activation also plays 
a key role in this balance. Note that in analyses below we graph the relative stiffness, 𝑘𝑘/𝑘𝑘𝑁𝑁, where 𝑘𝑘𝑁𝑁 =
0.5 × 105 is the fixed stiffness of the neutral attractors.   
  For each optimization, the initial positions and velocities for each tract variable are set to the 
empirical values for that tract variable. Due to the network architecture (see Fig. 8), the initial positions 
generated by the model never change. Furthermore, the backpropagation implementation never adjusts 
the initial gestural activations, and so the velocities at the first time step also remain fixed. 
 Two different approaches to initializing gestural activation functions (i.e. network input values) were 
investigated. Consider that in typical deep learning contexts, network parameter values are often 
randomly initialized. In our context however, there are more direct relations between the gestural 
activation functions and the network outputs. Hence it makes sense to consider an initialization strategy 
which makes use of these relations. One approach, which we refer to as gradient-based initialization, did 
this by setting the initial gestural activation functions to be a transformation of the empirical tract variable 
time derivatives. Examples are shown with dashed lines in the middle and bottom panels of Fig. 11. 
Specifically, for each gesture, the derivative of the corresponding tract variable was calculated. If the 
gestural target was 0 (as for the |LA clo| gesture in Fig. 11), the sign of the derivative was reversed. The 
reason for this reversal is that gestures which decrease a tract variable are active when the derivative of 
the tract variable is negative. Next, the initial activation functions were rectified and then rescaled to a 
maximum of 1, because gestural activation is limited to the range [0, 1]. A simpler initialization approach, 
which we refer to as zero-initialization, involved setting the values of all gestural activation functions at 
all times to 0 (blue lines in Fig. 11).  
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Fig. 11. Comparison of zero- and gradient-based initialization. Top: empirical lip aperture time series. 
Middle, bottom: initial activation functions for |LA clo| and |LA op| gestures. 
 
 For the field model, the standard deviations of the excitatory and inhibitory Gaussian force 
distributions for all gestures were fixed at 0.1 normalized tract variable units. The proportionality constant 
for the relation between field activation and dynamic stiffness, k�, was fixed at 100. The initial modes of 
the excitatory Gaussian force distributions were the same as the gestural system targets in Table 1. The 
initial modes of the inhibitory force distributions were set to 𝑇𝑇�− = 1 − 𝑇𝑇�+, i.e. they were on the opposite 
ends of the tract variable coordinate space, such that, for example, the mode of the inhibitory force 
distribution of |LA clo| coincided with the mode of the excitatory force distribution of |LA op|. Neutral 
attractors exerted no inhibitory forces. Only the gradient-based initialization was used with the field 
model. 
 
Optimization algorithm. The models were optimized by using a fairly simple approach in which the error 
gradients were weighted by the learning rate parameters εg, εk, and εT, for gestural activation, stiffness, 
and target parameters, respectively. For the basic model optimizations, εg = 0.1 and εk = εT = 1.0 x 10-5. 
Different values for these parameters may result in different optimized parameters/activation functions, 
and indeed, the relative value of εg to εk/εT represents a decision about whether to prioritize variation in 
gestural activation or gestural targets/stiffnesses. The current values prioritize gestural activation. The 
following stopping criterion was used: if all decreases in the loss for 20 consecutive trials were less than 
1.0 x 10-5, the optimization was terminated. 
 
Analysis methods. The following analyses are conducted below. First, we compare the zero- and gradient-
based initialization strategies. To do this, we consider loss distributions, target and stiffness parameter 
distributions and correlations, and gestural activation functions. Second, we examine qualitative features 
gestural activation functions of the zero-initialization optimizations. For all analyses other than those 
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involving loss distributions, trials with a loss greater than the upper 98th percentile of the loss distributions 
were excluded. These exclusions were made in order to avoid drawing inferences based on potentially 
abnormal trials. 
 
Analyses 
 
Loss distributions 
 
The zero-initialization and gradient-based initialization strategies produced high-quality fits of the 
empirical data and had very similar loss distributions. The field model (with gradient-based initialization) 
exhibited substantially larger loss, indicative of poor fits of empirical data. For each of the 
models/initialization strategies, the loss distributions over all trials are shown in Fig. 12. Note that loss is 
measured in units of ½ squared error. As we discuss later, the poor fits of the field model may be due to 
the absence of free parameters for adjusting stiffness. 
 

 
Fig. 12. Loss distributions for the basic model and field model. Red lines show 98% threshold used for 
data exclusion in subsequent analyses. 
 
The correlation of individual-trial losses between the two initialization strategies for the basic model was 
very high (r=0.9987), as shown in Fig. 13. This suggests that the overall quality of the fits were similar. It 
also indicates that when the basic models did have low-quality fits (which was not often), it was due to 
idiosyncrasies of individual trials, rather than inappropriate initialization. 
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Fig. 13. Scatterplot of by-trial losses of zero- and gradient-based-initialization strategies. Red line is the 
function x = y. The proximity of points to this line indicates a high degree of correlation. 
 
Target and stiffness parameters 
 
The similarity of the loss distributions and their high correlations might lead one to infer that the 
optimized parameters of the models from both initialization schemes were similar, but this was far from 
the case. Instead, the gradient-based initialization resulted in substantially more variation within and 
between response categories (i.e. /pap/, /pat/, /pa/, /tat/, etc.). This difference is illustrated in Fig. 14 and 
Fig. 15, which show boxplots of  across-participant target and relative stiffness parameter distributions, 
from gradient-based and zero-initialization, respectively. The response categories (horizontal axes) are 
sorted by their mean relative stiffness for each gesture. The figures show that targets and stiffness 
remained fairly close to their initial values, especially for zero-initialization. This may not be surprising, 
given the difference in learning rates that was imposed on the parameters. 
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Fig. 14. Boxplots of across-participant target and relative stiffness parameter distributions from 
gradient-based initialization. Response categories are sorted by their mean relative stiffness for each 
gesture. 
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Fig. 15. Boxplots of across-participant target and relative stiffness parameter distributions from zero-
initialization. Scales are identical to those of Fig. 14. Response categories are sorted by their mean 
relative stiffness for each gesture. 
 

The same parameter distributions as above are shown in Fig. 16 and Fig. 17 below, after the 
parameters have been recentered for each participant/gesture. These allow for a clearer visual impression 
of patterns in between response-category variation. Response categories are sorted by their mean 
relative stiffness for each gesture. Particularly for the gradient-based initialization, it is evident from the 
sorting of the response categories that there is variation conditioned by the presence/absence of 
expected active gestures in the optimized values of LA and TT gestural target and stiffness parameters. 
For example, Fig. 16 shows that the stiffness parameters obtained with gradient-based initialization for 
|LA clo| were lower when the response included a /p/ (i.e. an active |LA clo| gesture), and lowest when 
two active |LA clo| gestures are expected, as in /pap/. In contrast, with zero-initialization, Fig. 17 shows 
that |LA clo| stiffness was higher when the response included a /p/. 
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Fig. 16. Boxplots of target and relative stiffness parameter distributions from gradient-based 
initialization, after recentering by participant and gesture. Response categories are sorted by their mean 
relative stiffness for each gesture. 
 
The aforementioned relation between stiffness and response category for the gradient-based 
initialization is somewhat unexpected. Specfically, it is curious that when the segmental identity of a 
response leads us to assume that an active gesture is present (e.g. an active LA clo gesture should be 
present when there is a /p/ onset or coda), the stiffnesses of corresponding gestures are lower. The 
relation for the zero-initialization scheme is more sensible: presence of an active gesture is associated 
with higher stiffness of that gesture, i.e. a stronger driving force from the gesture.  

Another noteworthy pattern of the gradient-based activation is that the least stiff vocalic gestures 
were those in the onsetless and codaless environment. This pattern is absent from the zero-initialization 
optimizations, where effectively no variation was observed in stiffness parameters of gestures other than 
|LA clo|. 



28 
 

 
Fig. 17. Boxplots of target and relative stiffness parameter distributions from zero- initialization, after 
recentering by participant and gesture. Scales are identical to those of Fig. 16. Response categories are 
sorted by their mean relative stiffness for each gesture. 
 

The target parameters of the basic model optimizations show some notably different patterns 
between participants/responses. These are illustrated for zero-initialization for |LA clo| and |LA op| in 
Fig. 18. In some cases, all or almost all of optimized parameter values remained at the extremes of the 
normalized tract variable scale, which ranges from 0 to 1. This arises when the backpropagation gradients 
are always pushing the target parameter toward a scale extremum, a phenomenon which we will refer to 
as pinning—i.e. a parameter value gets pushed against a floor or ceiling that is imposed in the gradient 
update step of each iteration of the optimization. Fig. 18 shows that pinning was prevalent for |LA clo| 
target parameters for all response categories for P01, and for several of the response categories for P03, 
P04, and P05. In other cases, the distributions were highly skewed toward the extremal value, suggestive 
of pinning on some but not all trials. In other cases the distributions were more normally distributed at 
some value close to the extremum. The same generalizations apply to the |TT clo| and |TT op| gestures 
(not shown), and interestingly, participant P01 also exhibited the strongest pinning of the |TT clo| gesture. 
Further investigation is required to determine when pinning occurs, and to what extent it has theoretical 
or empirical significance. It could be an artefact of how the empirical tract variables are scaled or the 
bounds imposed on gestural targets. 
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Fig. 18. Boxplots of target parameters for |LA clo| and |LA op| gestures obtained from zero-
initialization, for each subject and response. Boxes are 25th-75th percentile ranges, medians are thick 
lines, outliers are dots. 
 
Overall it was quite rare that the optimized parameters for any of the LA or TT gestures was further than 
0.05 from the extremal value, i.e. 5% of the full range, and for each participant (the range was larger, 
about 0.15, for the gradient-based optimizations). This indicates that the optimized values are capturing 
some degree of regularity in the target parameters of gestures, which is desirable if we suppose that 
gestural targets are context-invariant. However, there were a fair number of statistically significant 
differences within participants between the target parameter distributions for some responses, which 
could suggest a context-specificity of targets. These differences could on the other hand be attributed to 
coarticulatory effects which are not captured by the model. 

The most strongly pinned (and therefore most consistent) target parameter was the target of the |TB 
[i]| gesture, which was pinned at 1 for nearly all of the participants/responses (Fig. 19). Interestingly, the 
|TB [a]| target was the least pinned of all six gestures.  
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Fig. 19. Boxplots of target parameter distributions for |TB [i]| and |TB [a]| gestures obtained with zero-
initialization, for each participant and response. Boxes are 25th-75th percentile ranges, medians are thick 
lines, outliers are dots. 
 

Stiffness parameters were never pinned by the optimization because they had no ceiling and a floor 
of 0, which is very low relative to the values necessary produce good results. Fig. 20 shows stiffness 
parameter distributions for each participant/response for the |LA clo| and |LA op| gestures, obtained 
with zero-initialization. The distributions for the TT and TB gestures (not shown) are in similar ranges. As 
shown in Table 2, the mean relative stiffnesses (rKg) for all six gestures with gradient-based initialization 
were in the range of 1.83-1.90, which means they were a bit less than twice as stiff as the neutral attractor. 
Observe that the clo gestures have higher mean stiffness than the op gestures, and TB [i] has higher 
stiffness than TB [a]. This might suggest that constriction formation gestures are more stiff than 
constriction release gestures. For zero-initialization, the optimized values were always very close to the 
initial value, which was twice the stiffness of the neutral attractor. This could be an artefact of the 
relatively low learning rates for stiffness and high error associated with initial activation functions. 
 

Table 2. Mean stiffnesses for each gesture and 95% distribution intervals 
 gradient-based-init. zero-initialization 
 rKg rKg_ci rKg rKg 
LA_clo 1.85 [1.65, 2.05] 2.01 [1.94, 2.08] 
LA_op 1.83 [1.61, 2.05] 2.00 [1.98, 2.03] 
TT_clo 1.90 [1.72, 2.08] 2.00 [1.97, 2.04] 
TT_op 1.88 [1.68, 2.07] 2.00 [1.98, 2.02] 
TB_a 1.83 [1.62, 2.04] 2.00 [1.99, 2.01] 
TB_i 1.89 [1.72, 2.07] 2.00 [1.97, 2.04] 
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Fig. 20. Boxplots of stiffness parameters for |LA clo| and |LA op| gestures for each subject and 
response, with zero-initialization. Boxes are 25th-75th percentile ranges, medians are thick lines, outliers 
are dots. 
 
Stronger correlations between parameters were observed with the gradient-based initialization than with 
zero-initialization. The correlations are shown in Fig. 21. In particular, the stiffnesses of pairs of gestures 
which share the same tract variables with opposing targets (i.e. antagonistic gesture pairs such as |LA clo| 
and |LA op|) are highly correlated (r ≈ 0.85) in the gradient-based scheme. This means that for trials in 
which the optimization procedure resulted in lower/higher stiffness for one gesture in a pair, the other 
also had lower/higher stiffness. These stiffness correlations are likely a consequence of co-activation 
patterns that we examine below. 
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Fig. 21. Parameter correlations for the basic model with gradient-based- and zero-initialization. 
 

Another instance of a strong correlation involves the |TT op| target and stiffness: these are negatively 
correlated (r = -0.73), entailing that when the TT release gesture had a less constricted target, it was more 
stiff. The analogous correlation was observed betwee the LA release gesture and its stiffness, but was 
somewhat more moderate (r = 0.45).  
 
Gestural activation functions: comparison of initialization strategies 
 
There are two main differences between the optimized activation functions obtained from zero-
initialization vs. gradient-based initialization: (i) Antagonistic gestural pairs (i.e. LA clo/op, TT clo/op, and 
TB [i]/[a]) had complementary activation peaks in the zero-initialization scheme; in contrast, these pairs 
had positively correlated activation peaks in the gradient-based scheme. (ii) Levels of gestural activation 
associated with activation peaks were higher in the gradient-based scheme than in the zero-initialization 
scheme.  

These differences are illustrated in Fig. 22 and Fig. 23, which show optimized gestural activation 
functions for an example utterance of /pat/, obtained from zero- and gradient-based initialization 
respectively. To see the complementary vs. co-activation patterns, examine the |LA clo| and |LA op| 
gestural activation functions obtained from zero-initialization (Fig. 22). During the |LA clo| peak 
associated with the onset of the target response (around time 0.475 s), |LA op| activation falls to zero. 
Subsequently, when the bilabial closure is released with the |LA op| gesture, |LA clo| activation falls to 
zero. These same patterns can be observed for the TT and TB antagonists. (Note that the activation 
functions reflect not only active gestural control, but passive mechanical effects, a phenomenon which 
we discuss later.) In contrast, the |LA clo| and |LA op| gestural activation functions obtained from 
gradient-based initialization of the same utterance (Fig. 23) show that the bilabial closure is associated 
with not only a peak in |LA clo| activation but also a smaller peak in |LA rel|. The same holds for the 
bilabial release and for other antagonist pairs. 

 
 



33 
 

 
Fig. 22. Example of optimized gestural activation functions obtained from zero-initialization, with the 
utterance /pat/. Top panel: empirical tract variables. Bottom three panels: gestural activation functions 
for antagonist pairs. 
 

The second main difference is that the activation values of peaks in the optimized gestural activation 
functions are larger for the gradient-based strategy than for the zero-initialization strategy. This can be 
seen by examing the gestural functions which are overlayed in Fig. 24. It is likely that this difference is a 
consequence of complementary activation vs. co-activation: because antagonistic gestures are co-active 
in the gradient-based scheme, the gesture which is primarily responsible for a change in the relevant tract 
variable (e.g. |LA clo| for the bilabial closure at the onset of the target response) must have relatively 
higher activation to overcome the effects of the co-active antagonist. 
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Fig. 23. Example of optimized gestural activation functions obtained from gradient-based initialization, 
with same token of /pat/ from Fig. 22. Top panel: empirical tract variables. Bottom three panels: gestural 
activation functions for antagonist pairs. 
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Fig. 24. Comparison of optimized gestural activation functions obtained from zero- and gradient-based 
initialization, with same token of /pat/ from Fig. 22. Top panel: empirical tract variables. Bottom panels: 
gestural activation functions. 
 
Gestural activation functions obtained from zero-initialization: general properties 
 
For reasons that we elaborate in the Discussion section, we focus subsequent analyses on gestural 
activation functions obtained from zero-initialization. There are several aspects of these functions that we 
examine: small persistent levels of activation pre- and post-response, variation in pre- and post-response 
activation levels, activation associated with passive consequences of movement, activation peaks with 
quasi-Gaussian profiles, phase separation of activation peaks for antagonistic gestures, and apparent 
hypo- and hyper-activation of consonantal closure gestures (i.e. |LA clo| and |TT clo|) when the same 
gesture occurs in both the onset and coda position of the response (i.e. for /pap/ and /tat/ forms).  
 Examination of average activation trajectories shows that gestures tend to have small, persisent levels 
of activation before and after the response. Fig. 25 illustrate this by showing the mean activation tractories 
for each participant for |LA clo| and |LA op| gestures in /pa/, /ta/, and /Øa/ responses. Not surprisingly, 
during the response (circa time 0, which is the vowel onset), there is an activation peak for |LA clo| for 
/pa/ responses but not for /ta/ and /Øa/ responses. Before the response, both |LA clo| and |LA op| have 
small but non-zero activation levels of about 0.05, with some variation across participants. These 
presumably reflect the fact that the labial posture adopted during the pre-response /i/ is not equivalent 
to the LA neutral attractor target of 0.5, and hence some LA clo/op activation is necessary to adjust the 
posture.  

There is a greater amount of post-response |LA clo| activation than pre-response, and more across-
participant variation. This pattern reflects inter-participant differences in the post-response labial 
posture: some participants tend to adopt a closed or nearly closed labial posture at the end of each trial. 
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For instance, P02 shows similar levels of activation pre- and post-response. Contrast this with P01, where 
|LA clo| is highly active after the response. Similar patterns are observed for TT gestures (not shown). 
 

 
Fig. 25. Average optimized gestural activation functions for |LA clo| and |LA op| gestures for /pa/, /ta/, 
and /a/ responses in the basic model. Lines show means for each participant/response category and 
95% confidence intervals. 
 
 In interpreting the activation patterns it is important to remember that the model does not capture 
biomechanical interactions between tract variables. Hence one possible hypothesis is that the labial 
posture during the pre-response vowel /i/ is a consequence of tongue-jaw-lip coupling: the TB [i] gesture 
drives TBCD (tongue body constriction degree) toward a target state, and this is accomplished by 
movements of the jaw and tongue body; because the lips are coupled to the jaw, there is a passive effect 
on the jaw. Hence the subthreshold activation patterns observed pre- and post-response may reflect 
passive biomechanical effects rather than active gestural influences.  
 The phenomenon of activation associated with passive effects may also be evident in |LA op| 
activation trajectories during the period of time associated with the vowel of the target response 
(beginning around time 0.05 s in Fig. 25). For all of the response categories shown in the figure, there is 
|LA op| activation during this period. This is not unexpected, given that the posture for /a/ involves a 
relatively open vocal tract, including a wide lip aperture. The lip aperture state during the vowel may be 
a passive biomechanical effect: the jaw is lowered to lower the tongue body (and/or retract the tongue 
root), and the lower lip passively lowers because of its connection to the jaw. On the other hand, lip 
aperture could also be an actively controlled state variable, with an |LA op| gesture being coupled to the 
|TB [a]| gesture. 
 A closer view of the |LA clo| and |LA op| average gestural activation functions during the response 
onset (Fig. 26) shows that the average profile of the |LA clo| activation peak associated with the bilaibal 
closure is quasi-Gaussian. There are notable deviations from this profile that are attributable to variation 
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in the pre- and post-peak activation levels. The quasi-Gaussian profile is also observed for most of the 
participants for the bilabial closure in coda (Fig. 27). The exception is P04, who exhibits a sigmoidal profile 
due to production of unreleased codas, i.e. [pap˺].  
 

 
Fig. 26. Response-onset view of optimized gestural activation functions for |LA clo| and |LA op| 
gestures for /pa/, /ta/, and /a/ responses in the basic model. Lines show means for each participant and 
response category, along with 95% confidence intervals. 
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Fig. 27. Gestural activation functions for |LA clo| and |LA op| gestures for /ap/, /at/, and /a/ responses 
in the basic model. Lines show means for each participant/response category and 95% confidence 
intervals. 
 

As mentioned previously, antagonistic clo/op activation peaks are complementary for zero-
initialization. Another way to visualize this is via the phase portraits in Fig. 28, which plot |LA clo| vs |LA 
op| gestural activation on the time interval [-0.050, 0.050] for /pa/, /ta/, and /a/ responses. The markers 
in each panel indicate the beginning of the time interval (circles), time 0 (squares), and the end of the time 
interval (diamonds). Line colors also grow darker over time in each portrait. To interpret the phase 
portraits, note that values below the diagonal line in each panel corresponds to times when |LA clo| 
activation is higher than |LA rel| activation, and vice versa for values above the diagonal. If the activation 
peaks were perfectly out-of-phase, the phase portraits would be L-shaped: |LA op| activation would 
remain at zero while |LA clo| activation makes a horizontal excursion, and then |LA clo| activation would 
remain at zero while |LA op| makes a vertical exclusion. The deviations from perfect phase separation are 
quite small, and thus the patterns may be consistent with analyses in which closure and release gestures 
are controlled via anti-phase coordination of coupled oscillators (Nam, 2007; Tilsen, 2017, 2020).   
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Fig. 28. Phase plots of |LA clo| vs |LA op| mean gestural activation on the time interval [-0.050, 0.050] 
for /pa/, /ta/, and /a/ responses in the basic model. Markers indicate beginnings (circles), time 0 
(squares), and ends (diamonds) of trajectories. Line colors grow darker over time. 
 

Another interesting pattern involves variation in the peaks of gestural activation functions that are 
conditioned by onset-coda gestural identity: activation peaks for codas may be hyper- or hypo-active 
relative to onset peaks, depending on the participant. These pattern are illustrated in Fig. 29, which shows 
gestural activation functions of |LA clo| and |LA op| for /pap/, /tap/, and /ap/ responses. For P02, P03, 
and P05, the activation peak associated with the coda bilabial closure is lower in /pap/ (blue lines) than in 
/tap/ (red line). This can described as a hypo-activation of the |LA clo| gesture. In contrast, for P01 and 
P02, the same peak is higher in /pap/ than in /tap/; this can be described as hyper activation. The 
interpretation of this variation is complicated by the fact that the relative activation peaks between /ap/ 
and /pap/ differ as well.  
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Fig. 29. Average gestural activation functions for |LA clo| and |LA op| gestures for /pap/, /tap/, and /ap/ 
responses. Lines show means for each participant/response category, and filled regions show 95% 
confidence intervals. 
 
The causes of these differences in maximal activation warrant further investigation. One possibility is that 
onset-vowel coarticulation affects the vocalic posture (see below), which thereby induces changes in the 
gestural activation that is necessary to accomplish a coda constriction. Another possibility is that the 
activation amplitudes interact with the target and/or stiffness parameters. Indeed, the recentered across-
subject parameter values for zero-initialization in Fig. 17 showed that the stiffnesses of |LA clo| were 
higher for /pap/ responses than /tap/ responses. On the other hand, it is not clear why amplitudes would 
interact with stiffness in this way. A third possibility, and perhaps the most interesting one, is that 
mechanisms which are not incorporated in the model cause a gesture that is repeated in a word form to 
have diminished activation. This could arise from habituation-like attenuation of spiking rate in the 
premotor neural population that encodes a gesture. 

As with TT and LA gestures, |TB [i]| and |TB [a]| gestural activation functions exhibit complementary 
activation and passive effects; however, they lack quasi-Gaussian activation profiles. Fig. 30 shows 
average gestural activation functions for these gestures for all target response categories. The fact that 
the activation profiles are not quasi-Gaussian may be related to the fact that vowel segments appear not 
to be comprised of constriction and release gestures. 
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Fig. 30. Gestural activation functions for |TB [i]| and |TB [a]| gestures for all responses. Lines show 
means for each participant/response category and 95% confidence intervals. 
 

Regarding passive effects in TB gestural activations, observe that for some of the participants there 
are higher levels of |TB [i]| activation at response onset for targets which include a |TT clo| onset gesture 
(i.e. /tap/, /tat/, and /ta/). This extra |TB [i]| activation may be attributable to jaw raising in support of 
the |TT clo| gesture. Of course, a similar effect could also be expected for /p/ onsets, but the relative sizes 
of these effects may differ and vary across participants. A related case of passive effect involves |TB [a]| 
activation, which during production of the vowel tends to exhibit lower maximal activation when there is 
a |TT clo| gesture in its environment. Presumably jaw raising for |TT clo| is responsible for this effect as 
well. 
 
Discussion and conclusion 
 
Overall, the analyses show that the optimized parameters and activation functions depend strongly on 
initialization. This dependency was observed despite the fact that both zero- and gradient-based 
initializations resulted in high-quality fits of empirical tract variables and had highly correlated loss across 
trials. Consider that the initialization space is very high-dimensional: the basic models include dimensions 
not only for all gestural target and stiffness parameters, but also for the value for each gestural system at 
each time step, of which there were about 800 for each trial. Thus there are around (6 x 2) + (6 x 800) = 
4812 parameters in each optimization, most of which are dimensions for gestural activation. The high 
correlation of loss between strategies indicates that even though the two initialization strategies begin in 
very different locations in the activation function subspace, both are able to converge to different regions 
of the parameter space which result in similar-quality fits. This tell us that the network model in its current 
form cannot be used to identify gestural parameters and activation functions that are independent of 
initialization, or which necessarily reflect a global optimum.  
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 Thus we should ask: are there reasons to prefer one initialization strategy over the other? Relatedly, 
are there general desirable properties of the network outputs which can be used to guide the preference? 
Earlier we noted that in typical deep learning contexts, parameters are often initialized to random values. 
Although this approach has not been tested systematically with the current network and datasets, it 
seems unlikely to provide useful results, for a couple reasons. First, regarding target parameters, there 
are desirable relations between the targets of antagonistic gestures, such that closure (clo) and release 
(op) targets are on opposite ends of a tract variable coordinate. Allowing random initialization to subvert 
these relations could lead to exchanges in the “meaning” (i.e. functional results) of clo and op gestures, 
and might fail under gradient-based initialization because the activation functions are designed with these 
differences in mind. 
 Second, the gestural activation functions should be obey a mild smoothness constraint, such that 
there do not exist very abrupt changes in their values. Both initialization schemes impose this constraint 
on the initial activation functions. In the case of the gradient-based scheme, smoothness is imposed 
because tract variable derivatives are effectively smooth (in a relative sense), both before and after the 
rectification. In both cases, the optimized activation functions are also mildly smooth, even though the 
gradient-based initialization results is somewhat less smooth functions. It is not clear exactly why this 
happens: there is nothing explicit in the optimization algorithm that imposes this constraint. It may be a 
consequence of the fact that empirical tract variables change smoothly and the model requires smooth 
inputs to generate smooth outputs (again, our sense of smooth here is relative). 
 Although both initialization strategies provide good fits and relatively smooth activation functions, 
they differ in a several important ways. First, zero-initialization is simpler than gradient-based-
initialization, because it does not make use of the empirical tract variable data. Second, zero-initialization 
results in more consistency in parameter values across trials. It is not clear why this is the case. It could be 
that because gradient-based initialization begins with activation values that are closer to the optimized 
ones, there is—in the course of the optimization—relatively less movement in activation dimensions and 
relatively more in the target and stiffness parameter dimensions. In contrast, zero-initialization may be 
dominated by movement in activation dimensions for a greater proportion of optimization iterations, 
because the initial error gradients in these dimensions will be larger. 
 Third, the optimized activation states of antagonistic gestures are differently related depending on 
the initialization. Gradient-based initialization resulted in co-activation of antagonists. This is an 
interesting pattern because it is analogous to muscular control, where movements accomplished by an 
agonist may involve slight activation of an antagonist. The balance between the effects of opposing 
systems may result in overall greater stability. Zero-initialization, on the other hand, was associated with 
complementary activation of antagonists. This may be desirable because it effectively reduces the entropy 
of the gestural system, by introducing a negative correlation between antagonists that is stronger than 
the positive correlation observed under gradient-based initialization. For related reasons, zero-
initialization also requires less total gestural activation—if some form of activation-based energy 
conservation principle applies to the control system, this would be an advantage. 
 On the basis of the above differences, I am inclined to prefer the zero-initialization strategy. However, 
caution is warranted in developing a strong preference, because the effects of relative learning rates on 
the optimization results are not yet understood. Specifically, we used a learning rate for gestural activation 
that was 3 orders of magnitude greater the learning rates for target and stiffness parameters. This large 
ratio was not systematically derived, although pilot optimizations indicated that lowering the ratio of 
learning rates too much often resulted in instability of loss over iterations and convergence failure.  
 
The main advantage of the RNN approach over standard methods of analyzing articulatory time series is 
that it does not require us to impose any temporal delimitation on articulatory gestures. It is fully 
consistent with the systems-conception of articulatory gesture and provides a new version of an old 
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theoretical entity—the gestural activation function—which can be analyzed in novel ways. However, as 
should be clear from the above exposition, the potential utility of this entity is compromised in a couple 
of ways: namely, the results of optimizations are non-unique (they depend on initialization), and the 
network neglects to model articulators, thereby conflating passive and active gestural effects. 
 The latter issue may be resolved by incorporating model articulator position and velocity nodes into 
the network, along with parameters that represent the weights of the pseudo-inverse Jacobian matrices 
in the SM89 model. These parameters describe the relative influences of tract variable changes on 
changes in articulator positions/velocities and should be learnable via the backpropagation methods 
employed here. The loss would then be calculated directly based on the articulators, i.e. the horizontal 
and vertical positions of sensors. Such an approach would allow for implicit learning of parameters which 
are otherwise quite difficult to estimate (Lammert et al., 2010). It is also possible that the output space 
could be a real-time MRI image, where the network learns to generate pixel intensity maps from gestural 
activation functions. 
 The non-uniqueness problem is more challenging to address. To some extent, it seems that certain 
choices must be made (and hopefully motivated) based on desirable properties of the input and static 
parameters. For example, consistency in gestural target parameters across response categories may be 
desirable because it amounts a more parsimonious account of the long-term memories associated with 
gestures (and indeed, many descriptions of the AP/TD framework adopt a hypothesis of gestural 
target/stiffness invariance). On the other hand, there may be a trade-off between less variation in 
target/stiffness parameters and more variation in gestural activation functions, which raises the question:  
what causes variation in gestural activation? Here we need new, creative ideas for mechanisms of 
causation in the next highest level of the never-ending hierarchy of causality. Some of my previous work 
has attempted to incorporate competitive queuing dynamics (Bullock, 2004; Bullock & Rhodes, 2002; 
Grossberg, 1978, 1987) as a level of control/organization above the gestural level (see Tilsen, 2013, 2016, 
2018, 2019b). 

The non-uniqueness issue also relates to another topic of investigation, which is the effects of relative 
learning rates and parameter constraint on optimization results. It is not clear to what extent the 
optimizations obtained here depend on the large difference in learning rates for gestural activation vs. 
target/stiffness parameters. This issue might be productively addressed by using algorithms with adaptive 
dynamic learning rates, which are common in deep learning contexts. 
 The field model in its current form provided lower-quality fits than the basic model. The reason for 
this is that there were no free parameters to scale the areas of the activation fields that were used to 
calculate dynamic stiffness. This problem may be readily addressed by incorporating one optimizable 
parameter, or tract-variable specific parameters. 
 Finally, the task of developing methods for reducing the dimensionality of the gestural activation 
function remains to be undertaken. It is evident from inspection of activation functions that they will lend 
readily to extremum/threshold-based methods that are typically applied directly to tract variables. By 
applying these methods instead to activation functions, it is easier to keep in mind that the resulting 
“activation intervals” are based on arbitrary decisions about when a gestural system is sufficiently active 
to warrant the postulation of a bounded interval. More to the point, if the model can be successfully 
extended along the lines proposed above—i.e. to generate articulator trajectories—and if constraints on 
parameters can be reasonably justified, then the activation functions learned by the model can be viewed 
as theoretical entities which are themselves interesting objects of analysis. 
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Appendix: backpropagation  
 
Basic model backpropagation 
 
The derivative of the loss, 𝐿𝐿𝑖𝑖(𝑡𝑡) for TV i with respect to the output 𝑋𝑋𝑖𝑖(𝑡𝑡), is simply the error, i.e. the 
difference between the model output and target output, 𝑌𝑌𝑖𝑖(𝑡𝑡), (Eq. 27). In the current design, this is the 
only contribution to the loss that comes from the state of the network at time t. Other contributions to 
𝐿𝐿𝑖𝑖(𝑡𝑡) come from the position and velocity at the previous time step, 𝑋𝑋𝑖𝑖(𝑡𝑡 − 1) and 𝑉𝑉𝑖𝑖(𝑡𝑡 − 1). This is where 
backpropagation through time becomes necessary: because the current error is determined by the 
current position of a TV system, and in turn the current position of a TV system is determined by its 
previous state (position and velocity), the error at time t must be attributed in part to 𝑋𝑋𝑖𝑖(𝑡𝑡 − 1) and 
𝑉𝑉𝑖𝑖(𝑡𝑡 − 1). 
  

 ∂𝐿𝐿𝑖𝑖(𝑡𝑡)
∂𝑋𝑋𝑖𝑖(𝑡𝑡)

= 𝐸𝐸𝑖𝑖(𝑡𝑡) = 𝑋𝑋𝑖𝑖(𝑡𝑡) − 𝑌𝑌𝑖𝑖(𝑡𝑡) 

 

(Eq. 27) 

 
The portion of the error associated with the current position, which is due to the previous position, is: 
 

 𝜕𝜕𝑋𝑋𝑖𝑖(𝑡𝑡)
𝜕𝜕𝑋𝑋𝑖𝑖(𝑡𝑡 − 1) = 1 

 

(Eq. 28) 

 
And the portion of the error associated with the current position due to the previous velocity is: 
 

 ∂𝑋𝑋𝑖𝑖(𝑡𝑡)
∂𝑉𝑉𝑖𝑖(𝑡𝑡 − 1) = Δ𝑡𝑡 

(Eq. 29) 

 
The error associated with the velocity 𝑉𝑉𝑖𝑖(𝑡𝑡) is attributable to the previous position and velocity; thus 
backpropagation through time is also required. The relevant partial derivatives are shown in (Eqs. 30 and 
31). 
 

 𝜕𝜕𝑉𝑉𝑖𝑖(𝑡𝑡)
𝜕𝜕𝑋𝑋𝑖𝑖(𝑡𝑡 − 1) = −Δ𝑡𝑡𝐾𝐾𝑖𝑖(𝑡𝑡) 

 

(Eq. 30) 

 ∂𝑉𝑉𝑖𝑖(𝑡𝑡)
∂𝑉𝑉𝑖𝑖(𝑡𝑡 − 1) = 1 − 2Δ𝑡𝑡�𝐾𝐾𝑖𝑖(𝑡𝑡) 

 

(Eq. 31) 

 
The error in the current velocity also depends on the error in the current dynamic stiffness and target, so 
we use the partial derivatives in (Eq. 32, 33) to backpropagate error to the stiffness and target nodes: 
 

 ∂𝑉𝑉𝑖𝑖(𝑡𝑡)
∂𝐾𝐾𝑖𝑖(𝑡𝑡)

= −Δ𝑡𝑡[𝐾𝐾𝑖𝑖(𝑡𝑡)(−1/2)𝑉𝑉𝑖𝑖(𝑡𝑡 − 1) + 𝑋𝑋𝑖𝑖(𝑡𝑡 − 1) − 𝑇𝑇𝑖𝑖(𝑡𝑡)] 

 

(Eq. 32) 

 ∂𝑉𝑉𝑖𝑖(𝑡𝑡)
∂𝑇𝑇𝑖𝑖(𝑡𝑡)

= Δ𝑡𝑡𝐾𝐾𝑖𝑖(𝑡𝑡) 
(Eq. 33) 
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Fig. 31. Illustration of error flow in basic model. 
 
Finally, we can backpropagate error to the parameters and activation functions. Part of the error in 𝐾𝐾𝑖𝑖(𝑡𝑡) 
and 𝑇𝑇𝑖𝑖(𝑡𝑡) is attributable to the gestural parameters. For each gesture j, the partial derivatives which 
modulate error flow from the dynamic parameters to the gesture parameters are shown in (Eq. 34, 35). 
Note that 𝑊𝑊𝑖𝑖𝑗𝑗  is the gesture-to-TV interaction matrix. 
 

 ∂𝐾𝐾𝑖𝑖(𝑡𝑡)
∂𝑘𝑘�𝑗𝑗

=
𝑊𝑊𝑖𝑖𝑗𝑗𝐺𝐺𝑗𝑗(𝑡𝑡)

∑ 𝑊𝑊𝑖𝑖𝑗𝑗𝑗𝑗 𝐺𝐺𝑗𝑗(𝑡𝑡)
 

 

(Eq. 34) 

 ∂𝑇𝑇𝑖𝑖(𝑡𝑡)
∂T�𝑗𝑗

=
𝑊𝑊𝑖𝑖𝑗𝑗𝐺𝐺𝑗𝑗(𝑡𝑡)

∑ 𝑊𝑊𝑖𝑖𝑗𝑗𝑗𝑗 𝐺𝐺𝑗𝑗(𝑡𝑡)
 

 

(Eq. 35) 
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The other part of the error associated with the dynamic parameters is attributable to gestural activation, 
because gestural activation is the weighting term in the forward equations (Eq. 17, 18). The partial 
derivatives which regulate this flow are shown in (Eq. 36, 37). 
 
 ∂Ki(t)

∂Gj(t) =
Wijk� j ∑ Wijj Gj(t) − Wij ∑ Wijj Gj(t)k� j

�∑ Wijj Gj(t)�2
 

 

(Eq. 36) 

 ∂Ti(t)
∂Gj(t) =

WijT�j ∑ Wijj Gj(t) − Wij ∑ Wijj Gj(t)T�j
�∑ Wijj Gj(t)�2

 
(Eq. 37) 

 
Field model backpropagation 
 
The partial derivatives used for backpropagation of error to position, velocity, stiffness, and target nodes 
are the same as those in the basic model. For the backpropagation of error to the intentional planning 
fields, there are two sources of error: from the dynamic stiffness, and from the dynamic target. The 
relevant partial derivatives are shown in (Eq. 38, 39). 
 

 𝜕𝜕𝐾𝐾𝑖𝑖(𝑡𝑡)
𝜕𝜕𝐹𝐹𝑖𝑖𝑘𝑘(𝑡𝑡)

=
1
Δ𝑡𝑡

 

 

(Eq. 38) 

 𝜕𝜕𝑇𝑇𝑖𝑖(𝑡𝑡)
𝜕𝜕𝐹𝐹𝑖𝑖𝑘𝑘(𝑡𝑡)

=
𝜏𝜏𝑘𝑘 ∑ 𝐹𝐹𝑖𝑖𝑘𝑘(𝑡𝑡)𝑛𝑛

𝑘𝑘=1 − ∑ 𝐹𝐹𝑖𝑖𝑘𝑘(𝑡𝑡)𝜏𝜏𝑘𝑘𝑛𝑛
𝑘𝑘=1

[∑ 𝐹𝐹𝑖𝑖𝑘𝑘(𝑡𝑡)𝑛𝑛
𝑘𝑘=1 ]2  

 

(Eq. 39) 

 
The intentional planning fields depend on the excitatory and inhibitory components of the field, and so 
error is propagated to these components using the partial derivatives in (Eq. 40, 41). 
 

 𝜕𝜕𝐹𝐹𝑖𝑖𝑘𝑘(𝑡𝑡)
𝜕𝜕𝐹𝐹𝑖𝑖𝑘𝑘+(𝑡𝑡)

=  1, 𝐹𝐹𝑖𝑖𝑘𝑘(𝑡𝑡) > 0
0, 𝐹𝐹𝑖𝑖𝑘𝑘(𝑡𝑡) = 0 

 

(Eq. 40) 

 𝜕𝜕𝐹𝐹𝑖𝑖𝑘𝑘(𝑡𝑡)
𝜕𝜕𝐹𝐹𝑖𝑖𝑘𝑘−(𝑡𝑡)

=  −1, 𝐹𝐹𝑖𝑖𝑘𝑘(𝑡𝑡) > 0
0, 𝐹𝐹𝑖𝑖𝑘𝑘(𝑡𝑡) = 0 

 

(Eq. 41) 

 
Both excitatory and inhibitory components depend on the gestural activation. (Eqs. 42 and 43) describe 
how error is propagated from the components to gestural activation.  
 

 𝜕𝜕𝐹𝐹𝑖𝑖𝑘𝑘+(𝑡𝑡)
𝜕𝜕𝐺𝐺𝑗𝑗(𝑡𝑡)

= 𝑊𝑊𝑖𝑖𝑗𝑗𝒩𝒩�𝜏𝜏𝑘𝑘 ,𝑇𝑇�𝑗𝑗+� 

 

(Eq. 42) 

 𝜕𝜕𝐹𝐹𝑖𝑖𝑘𝑘−(𝑡𝑡)
𝜕𝜕𝐺𝐺𝑗𝑗(𝑡𝑡)

= 𝑊𝑊𝑖𝑖𝑗𝑗𝒩𝒩�𝜏𝜏𝑘𝑘 ,𝑇𝑇�𝑗𝑗−� 

 

(Eq. 43) 

 
The excitatory and inhibitory components also depend on the central values of the Gaussian force 
distributions associated with gestures, as shown in (Eq. 44, 45). 
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 𝜕𝜕𝐹𝐹𝑖𝑖𝑘𝑘+(𝑡𝑡)
𝜕𝜕𝑇𝑇�𝑗𝑗+

=
�𝜏𝜏𝑘𝑘 − 𝑇𝑇�𝑗𝑗+�

𝜎𝜎
𝒩𝒩�𝜏𝜏𝑘𝑘,𝑇𝑇�𝑗𝑗+�𝑊𝑊𝑖𝑖𝑗𝑗𝐺𝐺𝑗𝑗(𝑡𝑡) 

 

(Eq. 44) 

 𝜕𝜕𝐹𝐹𝑖𝑖𝑘𝑘−(𝑡𝑡)
𝜕𝜕𝑇𝑇�𝑗𝑗−

=
�𝜏𝜏𝑘𝑘 − 𝑇𝑇�𝑗𝑗−�

𝜎𝜎
𝒩𝒩�𝜏𝜏𝑘𝑘,𝑇𝑇�𝑗𝑗−�𝑊𝑊𝑖𝑖𝑗𝑗𝐺𝐺𝑗𝑗(𝑡𝑡) 

 

(Eq. 45) 

 
Matlab implementation and gradient checking 
 
Here Matlab code for the basic model is provided. This code can be used to implement the forward and  
backward passes of the network. Gradient checking can be implemented for various parameters by 
comparing a gradient obtained via backpropagation to a numeric gradient obtained by imposing small 
perturbations of ±ε to a single parameter. For example, to check that 𝜕𝜕𝐿𝐿

𝜕𝜕𝐺𝐺𝑗𝑗(𝑑𝑑), the gradient of the loss with 

respect to change in gesture j at time t, is being calculated correctly in the backward pass, calculate L1 as 
the loss from a forward pass with 𝐺𝐺(𝑡𝑡, 𝑗𝑗)1 = 𝐺𝐺(𝑡𝑡, 𝑗𝑗) − 𝜀𝜀, and  L2 as the loss from a forward pass with 
𝐺𝐺(𝑡𝑡, 𝑗𝑗)2 = 𝐺𝐺(𝑡𝑡, 𝑗𝑗) + 𝜀𝜀, and calculate the numeric gradient ∂L

∂𝐺𝐺𝑗𝑗(𝑑𝑑) = 𝐿𝐿2−𝐿𝐿1
2ϵ

 . Then compare the numeric 

gradient to the value of dG(t,j) from the backward pass. These values should differ by only a small amount 
that is close to machine precision. 
 
%{ 
variables: 
dt:   time step; 
Ntv:    number of tract variables;  
Ng:   number of gestures + number of neutral attractors 
W:   logical matrix with map of tract variable (rows) to gestures (columns) 
E(t,i):  error at time t for TV i 
X(t,i):  position at time t for TV i 
V(t,i):  velocity at time t for TV i 
K(t,i):  stiffness at time t for TV i 
T(t,i):  target at time t for TV i 
dX(t,i): gradient of loss wrt. position for TV i at time t 
dV(t,i): gradient of loss wrt. velocity for TV i at time t 
G(t,j):    gestural activation at time t for gesture j 
Kg(j):  gestural and neutral attractor stiffnesses 
Tg(j):  gestural and neutral attractor targets 
%} 
 
%forward pass 
for t=2:Nt 
     
 %dynamic stiffness and target: 
    K(t,:) = W*(G.*Kg)' ./ (W*G'); 
    T(t,:) = W*(G.*Tg)' ./ (W*G'); 
  

%velocity: 
    V(t,:) = V(t-1,:) + dt*(-2*sqrt(K(t,:)) .* ... 

V(t-1,:) - K(t,:).* (X(t-1,:) - T(t,:))); 
     

%position: 
    X(t,:) = X(t-1,:) + dt*V(t-1,:);  
end 
 
%error and loss 
E = X-Y; 
L = sum((1/2)*E.^2); 
  
%error associated with position and velocity at final time step is 0: 
dX(Nt,:) = 0; 
dV(Nt,:) = 0; 
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%backward pass 
for t=Nt:-1:2 
    

%gradient of loss wrt. position is current error plus error backpropagated through time from 
the following timestep: 
dX(t,:) = dX(t,:) + E(t,:); 

  
    %gradient of current loss wrt. to current velocity is 0: 
    dL_dV = 0;  
     

%gradient of total loss wrt. current velocity includes the error backpropagated through time 
from the following timestep: 
dV(t,:) = dV(t,:) + dL_dV; 
 
%the following quantities are for calculating the backpropagation of error through time: 
%gradients of position error relative to previous position and velocity:     

    dX_dX_prev = 1; 
    dX_dV_prev = dt; 
 

%gradient of velocity error relative to previous position and velocity:     
    dV_dX_prev = -dt * K(t,:);               
    dV_dV_prev = 1 - 2*dt * (K(t,:).^(1/2)); 
 

%pass error backward in time:    
dX(t-1,:) = dX(t,:) .* dX_dX_prev + dV(t,:) .* dV_dX_prev; 
dV(t-1,:) = dV(t,:) .* dV_dV_prev + dX(t,:) .* dX_dV_prev; 

  
%gradient of velocity error relative to stiffness and target 

    dV_dK = -dt * (K(t,:).^(-1/2)) .* V(t-1,:) - dt*X(t-1,:) + dt*T(t,:);              
    dV_dT = dt * K(t,:); 
 

%denominator and numerators for gradients (see Eqs. 13, 14) 
    denom = W * G(t,:)'; 
    numer_dK = W * (G(t,:) .* Kg)'; 
    numer_dT = W * (G(t,:) .* Tg)'; 
 

%loop over tract variables and gestures 
    for i=1:Ntv 
        for j=1:Ng 
 

        %gradients of dynamic stiffness/target for TV i relative to gesture j: 
            dK_dG(i,j)= (denom(i)*W(i,j)*Kg(j) - numer_dK(i)*W(i,j)) * (1/denom(i))^2; 
            dT_dG(i,j)= (denom(i)*W(i,j)*Tg(j) - numer_dT(i)*W(i,j)) * (1/denom(i))^2; 
        end 
    end 
 

%loop over tract variables and gestures 
for i=1:Ntv 
    for j=1:Ng 

     
%error backpropagated to gestural activation (accumulate over tract variables) 

        dG(t,j) = dG(t,j) + dV(t,i) * (dV_dK(i)*dK_dG(i,j) + dV_dT(i)*dT_dG(i,j)); 
    end 
end 

 
%loop over tract variables and gestures 

    for i=1:Ntv 
        for j=1:Ng 
 

      %gradient of dynamic stiffness/target relative to gestural parameter  
           dK_dKg(i,j) = W(i,j)*G(t,j)/denom(i); 
           dT_dTg(i,j) = dK_dKg(i,j);  
 

    %accumulate error in parameters: 
           dKg(j) = dKg(j) + dV(t,i) * dV_dK(i) * dK_dKg(i,j); 
           dTg(j) = dTg(j) + dV(t,i) * dV_dT(i) * dT_dTg(i,j); 
        end 
    end 
end 
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